Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation.

نویسنده

  • Christoph W Basse
چکیده

Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis triggers the formation of tumors on aerial parts in which the fungal life cycle is completed. A differential display screen was performed to gain insight into transcriptional changes of the host response. Some of the genes strongly up-regulated in tumors showed a pronounced developmental expression pattern with decreasing transcript levels from basal to apical shoot segments, suggesting that U. maydis has the capacity to extend the undifferentiated state of maize plants. Differentially expressed genes implicated in secondary metabolism were Bx1, involved in biosynthesis of the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one, and a novel putative sesquiterpene cyclase gene U. maydis induced (Umi)2. Together with the up-regulation of Umi11 encoding a cyclotide-like protein this suggests a nonconventional induction of plant defenses. Explicitly, U. maydis was resistant to 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one but susceptible to its benzoxazolinone derivative 6-methoxy-2-benzoxazolinone. Infection studies of isolated leaves with U. maydis and Colletotrichum graminicola provided evidence for coregulation of Umi2 and PR-1 gene expression, with mRNA levels strongly determined by the extent of fungal colonization within tissue. However, in contrast to Umi2, transcript levels of PR-1 remained low in plants infected with wild-type U. maydis but were 8-fold elevated upon infection with an U. maydis mutant strongly attenuated in pathogenic development. This suggests that U. maydis colonization in planta suppresses a classical defense response. Furthermore, comparative expression analysis uncovered distinct transcriptional programs operating in the host in response to fungal infection and subsequent tumor formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin-proteasome degradation motif in ZmT...

متن کامل

Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells

The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of p...

متن کامل

A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors.

The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of t...

متن کامل

The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity

The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong...

متن کامل

Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 138 3  شماره 

صفحات  -

تاریخ انتشار 2005